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Subtle dynamic behaviour of finite-size |
Sherrington-Kirkpatrick spin glasses with non-symmetric
couplings
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Institut Physik 1l der Universitit Regensburg, D-8400 Regensburg, Federal Republic of
Germany

Received 26 April 1993

Abstract. We have studied numerically the parallel dynamics of non-symmetric Sherrington—
" Kirkpatrick spin glasses, varying the degree of symmetry 0 1= {Jipf) /{Jf,,) of the coupling
coefficients between 0 and 1. For systems of finite size N, in the limit + — oo and at ‘zero
temperature’, T = 0, we find subtle behaviour of the function {C2(t)) := {s; (0 — Dsie + 1)),
which characterizes the appearance of 2-cycles or fixed-point attractors quantitatively.
One has to distinguish the two cases
. 7 > 0.5, where (Ca(00)) = 1, L.e. the system is eventually trapped with probability 1 in
& fixed-point or a 2-cycle, if after ¢ — oo the limit N — o0 is taken, and
. n < 0.5, where, in contrast, (Cy(0c0)} is < 1, since longer cycles appear.
However, the ‘trapping’ for n > 0.5 happens only for T = (, and at time scales vy which
increase exponentially with N, whereas for T > 0, or if for T = 0 the limit ¥ — o0 would be
taken before ¢ — co, the quantity {Ca(z — ©0)) would decrease smoothly and monotonically
with decreasing n right from 5 = 1, in quantitative agreement with the mean-field simulation of
Eissfeller and Opper. ‘
For T = 0, the transient behaviour of (C2(f)) between the mean-field value, which is
reached already after typically 100 time steps, and the trapping event, is found to be to be
govemed by log-normal statistics with size~depending parameters.

The - parallel dynamics of Sherrington—Kirkpairick spin glasses with non-symmetric
couplings have been treated in a number of recent papers [1, 2] as an important example of
a complex dynamic system, where due to the lack of a Hamiltonian the attractors can be
complicated: e.g. in addition to fixed point attractors cycles can also appear, and the periods
and transient times of these cycles can be very large. In fact, in numerical experiments, one
of the present authors [3] has found that below a critical value 5. = 0.5 of the symmetry
parameter 7 to be defined in (3), cycles exist, with periods diverging exponentially with the
system size N,

In the present letter this problem is studied in detail, i.e. we concentrate on the long-time
behaviour of the so-called ‘2-cycle function’ {Co(1)} 1= {5;(t — 1)s;(z + 1}). Here 5; = %1
are the variables of the system, i the sites, # the (integer) time, and {-- -} means an average
over i as well as over various samples and initial conditions (see below). -Obviously,
{Ca(c0)} =1 would mean that with probability 1 the attractor of the system has either
period 1 (= fixed-point) or period 2 (= two-cycle).
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As a result of extensive numerical simulations we find below that at T = 0, i.e. without
thermal noise, the behaviour of {Ca(r)} is quite subtle, depending on whether 5 is larger
than 0.5 or not.

If n is > 0.5, one has (C2(t)} —-1 if + — oo for large fixed N, or more precisely: if
N is sent — oo later than ¢t — co. To be precise this means that for a finite system at
T =0and n > 0.5 the system is trapped either in a fixed-point or a 2-cycle at a time u,
which depends on the sample considered and on the initial conditions. As discussed below,
typical values of z increase exponentially with N,

In contrast, as long as the ‘thermal noise’ T is large enough, orat T =0, if N — co
is taken before t — oo, then {(C3(f)} saturates at a finite value < 1, which for sufficiently
large N does not depend on N and decreases smoothly with decreasing 5 right from 5 =1,
in quantitative agreement with the mean-field calculation of Eissfeller and Opper [1].

Thus our resuits shed light on the subtle problem of the interchange of limits t — oo,
N — oo and T — 0 in the present non-symmetric Sherrington-Kirkpatrick spin glass
system with paratle! dynamics, where the behaviour depends on several time-constants (see
below). For random sequential dynamics similar subtieties concerning the interchange of
limits have already been found by Crisanti and Sompolinsky {4} (see the discussion below),
although for those dynamics the physics is simpler, i.e. cycles cannot appear and at n = 0.5
nothing special happens.

We consider a system of sites { = 1, ..., N with Ising spin degrees of freedom, s; = %1,
which can e.g. be considered as the two states of formal neurons, s; = +1 representing the

“firing’ and 5; = —1 the ‘passive’ state. The dynarmics of the system are described at T =0
by :
N
s(t+1) = sign[ > J.-.ksk(:)] o))
k(z£)=1

where the updating is performed simultaneocusly for all sites i (‘parallel dynamics’).
For finite ‘temperature’, T > 0, equation (1) is replaced by the probabilistic rule

probfs; (¢ + 1) = 1] = [1 + exp(F 2h;(2)/T)1"" 2)

where h; = EM;H) J1.18%- (It should be noted that in (2) the probilities are already correctly
normalized: 0 < prob[s;] < 1 and prob[s; = +1] + probls; = —1] = 1.)

It is well known that the dynamics of this system, which can be solved analyticaily
only for the special case of complete asymmetry n = 0 (see below), both for parallel
dynamics [2], and also for random sequential dynamics [4, 5] depend crucially on the
symmetry parameter 5 of the couplings J;;, which are generated as follows. One chooses
independent Gaussian random numbers x and y with average 0 and variance 1 and
defines Jix = (x + py)/vN(1 +p?) and Ji; = (x — py)/VN(1 + p2). Then one has
(J1) = {Jra) = 0 and (J3) = (J2;) = 1/N, and the symmetry parameter is

(Fixdei) 1—p°
= ki) TP 3
(Ji?k) 1+ p2 3

Here we concentrate on parallel dynamics, since the simpler case of random sequential
dynamics has already been studied in {4] and the case of detenministic sequential updating
in [6]. For different values of the symmetry parameter n, starting in each case with typically
1000 random samples, where both the couplings and the input states were randomly chosen,
we have iterated the dynamical equations (1) and (2) up to very long times, e.g. ¢ = 20000,
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Figure 1. The averaged ‘2-cycle function® {Cz2(r}) =
{se{t — 1}si(z + 1)) is presented over the number ¢
of time steps of the dynamics of (1) with paraliel
updating, averaged over 100 random samples and
N = 640 different sites / per sample of a completely
connected non-symmetric Sherrington—Kirkpatrick spin
glass model with fixed vaiues of the symmetry
parameter  defined in (3), ranging from the completely
asymmetric case of » = 0 up to the symmetric case of
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Figure 2. The dependence of the apparent platean
values Cyp reached in figure 1 at t+ = 100 on the
symmetry parameter i is presented by crosses joined
by the solid line, showing the behaviour predicted by
the molecular field theory of [1] for parallel updating,
For comparison we also present similar results obtained
by [6] for deterministic sequential updating, plotted as
open circles joined by a dotted Iine. The error bars are
smaller than the symbol size.

n = 1.0. For every sample, a random initial condition
has been chosen. .

studying the expectation value {Ca(#)} := (5;{(t — 1)s;(¢ + 1)) as a function of ¢ in the limit
of large ¢ for different values of N, 5 and T. '

In the following, we present and discuss our results.

Infigure I, for T =0and 5 =0, 0.1, 0.2, ..., 1.0 we present the average {C.{)} over
t in a ‘short-time’ regime 0 < ¢ < 100 for N = 640, where averages over all 640 sites for
100 samples have been performed (1000 samples have been used in the long-time studies
to be discussed later). According to the results of figure 1, already after ~¢ 10 to ~ 40 time
steps (the actual number increases gradually with #), {Ca(2)) seems to saturate at a value,
which is < 1 as long as 5 < 1. The fluctuations around the average {C2(t = 100)} in
figure 1 are finite size effects and smaller than A 0.5 x 1072, This is just what one expects
from the statistics, since one is dealing with results from 100 random samples and 640 sites, -
so that the fluctuation amplitude should be < 64000712 & 0.4 x 102,

For 5 = 1, Gardner er af [7] have shown that the quantity presented in figure 1 converges
to 1 according to a power law 1 — {C,(f)) o 714, Although this is not a major point of
our study, we mention that a detailed analysis of figure 1 for short times shows that also for
n < 1 the results of figure 1 apparently converge to the plateau value {(C2(r = 100)) with
this power law, L.e. {Co(100)) — {Cat)) ™ c(nit~ 1900 where the prefactor c(y) decreases
with decreasing n. However, the range of z, where our results are statistically significant
enough to ascertain this power law (which is the case as long as (C,(100)) — {C2()} is still
larger than =~ 0.05), shrinks with decreasing # from ¢ < 12 for 5 = 0.6 down to ¢ < 4 for
n = 0.1. We do not present an extra plot of the detailed behaviour, since it is quite similar
to what Pfenning ez ol [6], have observed and plotted for sequential dynamics (see figure 2
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of [6], where only the prefactors are roughly haif as large as ours). However the saturation
value itself, which they obtain for given n with deterministic sequential dynamics, differs
quantitatively and qualitatively from what we get with deterministic parallel dynamics, as
can be seen from figure 2.

Figure 2 presents the apparent plateau values, as obtained from our figure 1, as a function
of n. The errors in this figure, as mentioned above, are smaller than the symbol size. The
results agree quantitatively with the recent results obtained by Eissfeller and Opper [1] for
t — oc¢ in a numerical implementation of the mean-field equations for parallel dynamics,
which are exact if the limit N — oo is taken first. These results will be referred to as
‘mean-field limits’, Cyg, below; for sufficiently large N they do not depend on N.

As already mentioned, the resuits of Pfenning ef a! [6] for sequential dynamics are also
plotted in figure 2. Interestingly, with sequential instead of parallel dynamics, the effect
of the ‘asymmetry noise’ is stronger, since the plateau values {Co(z = 100)) of [6] are
significantly smaller, particularly for n < 0.2 they behave « n?, whereas in our case of
parallel dynamics the increase is simply o« 5. We do not yet have an explanation for this
difference at present.

Now we come fo our main point. In our case, where one is dealing with finite
systems, the mean field theory for parallel dynamics of Eissfeller and Opper [1] is no
longer applicable, if ¢t — oo is taken first. In fact, extending our calculations to the much
longer time scales mentioned above we find the behaviour presented in figure 3. There,
for n =0.6 and T = (, averaging over all sites and now over 1000 samples, we see that
the averaged {Ca(t)), for ¢t larger than a second relaxation time zy, always ends at a finite
plateau value Coo(N) which considerably exceeds the ‘mean-field’ limit Cy mentioned
above, e.g. Coo(V) is as large as 0.97 already for N = 16, whereas Cyy = 0.88 for the 5
value considered (n = 0.6), see figure 2. Moreover, according to figure 3, C.{V) converges
to 1 for N — oo, which means that in this limit all samples are eventually trapped in a 2-
cycle or fixed point. However, the characteristic times Ty, where the plateau value Co(N)
of (Ca(t)} is reached, obviously also increase drastically with N, e.g. from figure 3 it can
be seen that Ty =~ 20000 for N = 256. This will be discussed more in detail below.

These results, which also have been obtained for other values of 5 between 0.5 and 1,
mean that for ¢ > Ty, if the limit N — oo is taken under this constraint, i.e. after t — oo,
then the systems with T = 0 and n > 0.5 get stuck either in a fixed peint or in a 2-cycle
with probability 1. (The case of < 0.5, which has already been studied by one of us in a
former paper [3], is mentioned further below.)

In figure 4, again for n = 0.6 we study how this ‘trapping’ behaviour is changed by a
small finite temperature for three sample sizes, N = 128, N = 192 and N = 256. There, up
to ¢ = 2500, the probabilistic dynamics of (2) have been chosen, with a small temperature
of T = 0.04. From figure 4 it can be seen that for N = 192 and N = 256 even this low
temperature is high enough to prevent the above-mentioned rrapping in most cases, so that
for these values of N, the sample-average {Cs(¢)} is essentiaily constant < 1 already for
t > 100, whereas for N = 128, T is not high enough to prevent the gradual increase of the
average (Cs(t)}, i.e. to prevent the trapping of more and more samples with increasing time.
Thus the necessary temperature for the suppression of trapping increases with decreasing .

In any case, switching off the thermal noise for ¢+ > 2500, one finds in the right part
of figure 4 that for all three values of N the function {C»(#)} converges monotonically to
{Ca(oo)) = 1, ie. for T = 0 and 5 > 0.5 we find that trapping cannot be avoided, although
the characteristic trapping time increases drastically with N. However, one should note at
this place that even such large trapping times as ty = 10000 for ¥ & 200 would still be
much less than the ultimate time Zwepexr = 2V (~ 109 for N = 200), after which the state
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Figure 3. The long-time behaviour of the averaged
‘2-cycle function' (Ca(r)) is presented over the time
for up to 20000 time steps, averaged for 1000 samples
for fixed size of the systemn, ranging from N = 16 to
N = 256, for # = 0.6.

L5985

N=128

1.0
N=192
N=256

0.
A
=
S T=1/3=0.04 Tt/ =0

v

-0.8 | 1 1 1 i

10 1000 20007 3000 4000 5000
time t

Figure 4. The long-time behaviour of {Cz(?)} is

presented over ¢ for the systems of figure 3 for N =
128, N =192 and W == 256, Between ¢ =1l and t =
2500, the stochastic parallel dynamics of (2) have been
applied with a low ‘temperature’ 7 = 0.04, whereas
at t = 2500 the system has swiiched to deterministic
updating, ie. with T = 0, equation (1). For further
explanation see the text.

of the finite system definitely must repeat, if it has not done so before.

To understand the N-dependence of the necessary temperature, we have studied the
behaviour of single typical samples. Figure 5 shows the typical behaviour of {C,(z)} for
two system sizes, N = 256 and N = 1024. For N = 256, (C2(2)) at first fluctuates strongly
around the ‘mean-field limit’ CyF, before eventually a strong-enough fluctuation leads to
a sudden trapping (see the inset in fipure 5(¢), whereas for & = 1024 the fluctuations
around the average are reduced by a factor 1/2, i.e. the fluctuation amplitude seems to
decrease o« N~1/2 as expected, so that for N = 1024 the system does not get trapped on
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Figure 5. The typical behaviour of
(Ca(1)} is presented, where only the
average over all sites i = 1,..., N
of one random sample has been
performed, with N = 256 in the
upper part (@), and ¥ = 1024 in
the lower part (), for n = 0.6.
In the inset, the time interval where
the system is trapped in the *2-
cycle attractor” at ¢ = 2946 in (@)
. is presented in a magnified form.
- Note that in (b) the Ructuations are
reduced by a factor of 0.5, i.e. their
amplitude is oc N—172,
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the time-scale considered.

Thus for n > 0.5 at T = 0K only fixed points or cycles with period 2 appear as traps
in the limit ‘¢ = oo first and then N — co’. ) '

On the other hand, for n < 0.5, too, we find 2-cycle traps with relatively high probability.
However, now we also find attractors with very long period, where even if the system is
trapped in such an attractor, {(C2(¢)) simply varies around the ‘mean field’ average Cyr(n)
presented in figure 2. The probability to find such a long-period attractor decreases with
increasing period, but increases with decreasing n, as can be seen from figure 5 and figure 6
of [3] already mentioned. These “long-period attractors’ are, however, very sensitive to small -
changes of the coupling constants: e.g., for systems with N ~ 150 and 5 = 0.4, changes
as small as Ap & 10~ (see equation (3)) already lead to the decay of a long attractor into
shorter-attractors in the vicinity of the orbit of the original long cycle.

At this point the following remark is in order. From our limited number of simulations
we can of course fix the apparent ‘critical value’ of » only approximately, namely to
ne &= 0.5 £ 0.025, since in figure 2 of [3], where the range of » has been covered rather
completely, we have already found the exponential increase of the cycle time with N clearly
for n = 0.45 and below, but clearly not for n = 0.55 and above.

An interesting question is the dependence of the trapping time v on N for our
Sherrington—Kirkpaptrick spin glass with non-symmetric couplings and parallel dynamics.
In their study for a similar model with random-sequential dynamics, Crisanti and
Sompolinsky [4] have found ‘log-normal behaviour’, ie. a nomnal distribution for In Ty,
with average and mean-square deviation increasing linearly with N for n = 0.72 and
n = 0.47. Such a behaviour is in agreement with our results for parallel dynamics, as can
be seen from figure 6, where we also find a ‘log-normal distribution’ for the different =y
obtained from the different samples used for N = 256 in figure 4.

From this ‘log-normal’ distribution, the results for ¥ = 256 in figure 4 can simply be
obtained by successively ‘filling the distribution’, i.e. with

) [In 222 2 .
one has
(C28)) = Cae + (1 — Co) f pley) doy - )

Here the time (N) appearing in the distribution is roughly the ‘halfway time’ between
™E = 100, where in figure 2 the ‘mean-field’ saturation value Cyg of {Ca(2)) is reached,
and the final trapping at {C2(2)} = |, i.e. from figure 2 for » = 0.6 one has Cyr = 0.885,

0.14

Figure 6. The log-normal distribution for the

trapping times found from our simulations at § =

0.6 for N = 256 is presented. The circles with error

] bars represent the numerical results obtained from

14 a histogram. The solid line is the fit with (4), for
7{N)=1275 and Ay = 1.25.

P(Ty)dTy

(=]
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and the time 7p(N) & 1275 obtained from our results for N = 256, if they are fitted with
(4) and (5), is roughly obtained if in figure 3 one looks for the time at which the function
{C=2(t)} assumes the value =2 0.9425, which is intermediate between 0.885 and 1.

For the simpler case of random sequential dynamics, [4], similar subtleties conceming
the interchange of the limits N — oo and ¢ — oo have been found. However, in that
case, if the limit ¢+ — oo is taken before N — oo, the system always ends in a metastable
state, i.e. a fixed point attractor, for all values of 5. Since for random sequential updating
cyclic attractors cannot appear, this is what one would ‘extrapolate’ from our study for that
simpler case. However, our systems are more complicated, In particular, due to the lack of
cyclic attractors in the case of [4], the different dynamic behaviour seer by us with parailel
dynamics for < 0.5 and > 0.5, respectively, with the possibility of extreme long cycles
in the first-mentioned case [3], but only fixed-point and 2-cycles in the second case, has no
correspondence at all in [4].

In conclusion, we have shown that the dynamic behaviour of Sherrington—Kirkpatrick
spin glasses with non-symmetric coupling under parallel updating is subtle, such that for
symmetry parameters n > (.5 and T = 0 there are at least three characteristic times,
namely (i) the short mean-field time typ (* 100 steps), which determines the approach to
the plateau values (C,{t = 100)) = Cyr plotted in figure 2 and does not depend-on N,
(ii) the trapping time 7y, which is much larger and increases exponentially with N, e.g. to
values as large as 20000 for N = 256 cbtained with n = 0.6 and T = 0 (see figure 3),
and (iii) the ‘transient time” to(V) appearing in the ‘log-normal distribution’ of (5) and (6).
This time, too, seems to increase exponentially with N and can be roughly characterized as
that time where for given NV the correlation function {C(¢)} assumes the intermediate value
between Cpyp and 1. For times larger than ty, the system is trapped in a 2-cycle or a fixed
point for n > 0.5, whereas for n < 0.5 also extremely long cycles form, as already found
in [3). However, the trapping phenomenon is suppressed already by small thermal noise.

At the end, the guestion remains as to what physical mechanisms lead to the above-
mentioned trapping and the related times (V) and ty. There seems to be some kind of
noise related to the non-symmetry, i.e. this noise would increase with decreasing symmetry
n. Partly this noise seems to act like thermal noise, ie. it tends to suppress {C2(7)}).
However, for n > 0.5 with deterministic dynamics, i.e. for T = 0, the tendency of the
system to get trapped in a fixed point or 2-cycle seems to win, although only at times,
which increase exponentially with the system size. Finally, in the same case, but for
n < 0.5, also cycles with exponentially long periods appear, see [3].
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