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LETTER TO THE EDITOR 

Subtle dynamic behaviour of finite-size 
Sherrington-Kirkpatrick spin glasses with non-symmetric 
couplings 

K Niitzel and U KEY 
lnstihlt F’hysik In der UniversitSt Regensbur& D-8400 Regensburg, Federal Republic of 
Germany 

Received 26 April 1993 

Abstract We have studied numerically the paIaUel dynamics of non-symmefic Sheniogton- 
KikpaIrick spin glasses. varying the degree of Symmefry t )  := (Ji.xJk,i)/(I&) of the Ooupting 
coefficienU between 0 and 1. For systems offinite size N. in ule limit I --f m and at ‘zero 
temperature’, T = 0. we find subtle behaviour of the funciion ( C N )  := (si@ - l)sj(I+ I)). 
which characterizes the appearance of Z-cycles or fixed-point amactors quantitatively. 

One has to distinguish the two cases 
v > 0.5, where (CAW)) + I ,  i.e. the system is eventually trapped with probability 1 in 
a fixed-point or a 2-cycle. if after t + m the limil N -+ m is taken, and 
rl < 0.5, where, in wnlrast, (Cl(m)) is c 1,  since longer cycles appear. 

. 
However, the ’trapping’ for q > 0.5 happens only for T = 0, and at time scales mr which 
increase exponentially with N, whereas for T > 0, or if for T = 0 the limil N --f m would be 
taken before I + m. the quantity (C2(t --+ 00)) would decrease smoothly and monotonically 
with decreasing I )  right from = 1, in quantitative agreement with the mean-field simulation of 
Eissfeller and Opper. 

For T = 0. the transient behaviour of (C2(r)) between the mean-field value, which is 
reached already after typically 100 time steps, and the trapping event is found to be to bc 
governed by log-normal statistics with sizedepending parameten. 

The parallel dynamics of Sherrington-Kirkpatrick spin glasses with non-symmetric 
couplings have been treated in a number of recent papers [I, 21 as an important example of 
a complex dynamic system, where. due to the lack of a Hamiltonian the attractors can be 
complicated: e.g. in addition to fixed point attmctors cycles can also appear, and the periods 
and transient times of these cycles can be very large. In fact, in numerical experiments, one 
of the present authors 131 has found that below a critical value qC sz 0.5 of the symmetry 
parameter r )  to be defined in (3), cycles exist, with periods diverging exponentially with the 
system size N. 

In the present letter this problem is studied in detail, i.e. we concentrate on the long-time 
behaviour of the so-called ‘2-cycle function’ (Czfr)) := (si(t - l)s& + 1)). Here si = fl 
are the variables of the system. i the sites, t the (integer) time, and (. . .) means an average 
over i as well as over various samples and initial conditions (see below). Obviously, 
(C~(o0)) = 1 would mean that with probability 1 the attractor of the system has either 
period 1 (= fixed-point) or period 2 (= two-cycle). 
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As a result of extensive numerical simulations we find below that at T = 0, i.e. without 
thermal noise, the behaviour of (Cz(t))  is quite subtle, depending on whether q is larger 
than 0.5 or not. 

If q is > 0.5, one has (Cz(t)) -+l if t -P CO for large fixed N, or more precisely: if 
N is sent + CO later than f + 00. To be precise this means that for a finite system at 
T = 0 and q > 0.5 the system is trapped either in a fixed-point or a 2-cycle at a time rN, 
which depends on the sample considered and on the initial conditions. As discussed below, 
typical values of TN increase exponentially with N. 

In contrast, as long as the ‘thermal noise’ T is large enough, or at T = 0, if N + 00 

is taken before t + CO, then (C,(t)) saturates at a finite value < 1, which for sufficiently 
large N does not depend on N and decreases smoothly with decreasing q right from q = 1, 
in quantitative agreement with the mean-field calculation of Eissfeller and @per [I]. 

Thus our results shed light on the subtle problem of the interchange of limits t + CO, 
N -j CO and T + 0 in the present non-symmetric Shemngton-Kirkpahick spin glass 
system with parallel dynamics, where the behaviour depends on several time-constants (see 
below). For random sequential dynamics similar subtleties conceming the interchange of 
limits have already been found by Crisanti and Sompolinsky [4] (see the discussion below), 
although for those dynamics the physics is simpler, i.e. cycles cannot appear and at q = 0.5 
nothing special happens. 

We consider a system of sites i = 1,. . . , N with king spin degrees of freedom, si = f l ,  
which can e.g. be considered as the two states of formal neurons, si = +l representing the 
‘firing’ and si = -1 the ‘passive’ state. The dynamics of the system are described at T = 0 
by 

where the updating is performed simultaneously for all sites i (‘parallel dynamics’). 
For finite ‘temperature’, T > 0, equation (1) is replaced by the probabilistic rule 

prob[si(t + 1) = f l ]  = [l +exp(? 2hi(t)/T)1-’ (2) 

where hi = &+i.czi, Ji,kSk. (It should be noted that in (2) the probilities are already correctly 
normalized 0 5 prob[si] 5 1 and probtsi = +1] +prob[si = -11 = 1.) 

It is well known that the dynamics of this system, which can be solved analytically 
only for the special case of complete asymmetry q = 0 (see below), both for parallel 
dynamics [2], and also for random sequential dynamics [4, 51 depend crucially on the 
symmetry parameter q of the couplings Ji,k, which are generated as follows. One chooses 
independent Gaussian random numbers x and y with avera e 0 and variance 1 and 
defines Jj,k = (x  + p y ) / , / m j  and &i = (x - py)/ *. N ( I  + pz) Then one bas 
(Ji,k) = ( J k , i )  = 0 and (J;k) = (J&) = 1/N, and the symmetry parameter is 

Here we concentrate on parallel dynamics, since the simpler case of random sequential 
dynamics has already been studied in [4] and the case of deterministic sequential updating 
in [€I]. For different values of the symmetry parameter q, starting in each case with typically 
lo00 random samples, where both the couplings and the input states were randomly chosen, 
we have iterated the dynamical equations (1) and (2) up to veIy long times, e.g. t = 20 000, 
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Figure 1. The averaged '2-cycle function' (Cz(f)) := 
(s;(t - I)s;(t C I ) )  is presented over rhe number f 

of time steps of the dynamics of (1) with parallel 
updating. averaged over IO random samples and 
N = 640 different sites i per sample of a completely 
connected non-synmeuic Shenington-Kirkppanick spin 
glass model with fixed values of rhe symmetry 
paramerer q defined in (31, ranging from the completely 
asymmetric case of q = 0 up lo the symmetric case of 
q = 1.0. For every sample, a random initial condition 
has been chosen. 

Figure 2. ?be dependence of the apparent plateau 
values CMF reached in figure 1 at f = 100 on the 
symmetry parameter q is presented by crosses joined 
by the solid line, showing the behaviour predicted by 
the molecular field theory of [I] for parallel updating. 
For comparison we also present similar results obtained 
by [6] for deterministic sequential updating. plotted as 
open circles joined by a dotted line. The error bars are 
smaller than the symbol size. 

studying the expectation value (Cz(t))  := (si(t - I)s& + 1)) as a function of  t in the limit 
of large t for different values of N, q and T. 

In the following, we present and discuss our results. 
In figure 1, for T = 0 and q = 0, 0.1.0.2,. . . , 1.0 we present the average (Cz(t))  over 

t in a 'short-time' regime 0 < t < 100 for N = 640, where averages' over all 640 sites for 
100 samples have been performed (loo0 samples have been used in the long-time studies 
to be discussed later). According to the results of figure 1, already after % 10 to rz 40 time 
steps (the actual number increases gradually with q), (Cz(r)) seems to saturate at a value, 
which is < 1 as long as q < 1. The fluctuations around the average (C,(t = 100)) in 
figure 1 are. finite size effects and smaller than % 0.5 x 1WZ. This is just what one expects 
from the statistics, since one is dealing with results from 100 random samples and 640 sites, 
so that the fluctuation amplitude should be 5 64000-1/2 % 0.4 x 

For q = 1,  Gardner era1 [7] have shown that the quantity presented in figure 1 converges 
to 1 according to a power law 1 - (C&)) a t-1.5. Although this is not a major point of 
our study, we mention that a detailed analysis of figure 1 for short times shows that also for 
q c 1 the results of  figure 1 apparently converge to the plateau value (CZ@ = 100)) with 
this power law, i.e. (Cz(l00)) - (C,(t)) cx c ( ~ ) ) t - ~ , ~ ~ . ~ ' ,  where the prefactor c(q) decreases 
with decreasing q. However, the range of t ,  where our results are statistically significant 
enough to ascertain this power law (which is the case as long as (Cz(lOO)) - (C,(r)) is still 
larger than % 0.05), shrinks with decreasing q from t 5 12 for q = 0.6 down to t 5 4 for 
il = 0.1. We do not present an extra plot of the detailed behaviour, since it is quite similar 
to what F'fenning et a1 161, have observed and plotted for sequential dynamics (see figure 2 
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of [6], where only the prefactors are roughly half as large as ours). However the saturation 
value itself, which they obtain for given q with deterministic sequential dynamics, differs 
quantitatively and qualitatively from what we get with deterministic parallel dynamics, as 
can be seen from figure 2. 

Figure 2 presents the apparent plateau values, as obtained from our figure 1, as a function 
of q.  The errors in this figure, as mentioned above, are smaller than the symbol size. The 
results agree quantitatively with the recent results obtained by Eissfeller and Opper [l] for 
z -+ M in a numerical implementation of the mean-field equations for parallel dynamics, 
which are exact if the limit N + 03 is taken first. These results will be referred to as 
‘mean-field limits’, Cm, below: for sufficiently large N they do not depend on N .  

As already mentioned, the results of Pfenning et al [6] for sequential dynamics are also 
plotted in figure 2. Interestingly, with sequential instead of parallel dynamics, the effect 
of the ‘asymmetry noise’ is stronger, since the plateau values (Cz(t = 100)) of [61 are 
significantly smaller, particularly for q -= 0.2 they behave x q2, whereas in our case of 
parallel dynamics the increase is simply o[ q.  We do not yet have an explanation for this 
difference at present. 

Now we come to our main point. In our case, where one is dealing with finite 
systems, the mean field theory for parallel dynamics of Eissfeller and Opper [l] is no 
longer applicable, if t + 00 is taken first’ In fact, extending our calculations to the much 
longer time scales mentioned above we find the behaviour presented in figure 3. There, 
for q = 0.6 and T = 0, averaging over all sites and now over 1000 samples, we see that 
the averaged (CZ(t)), for t larger than a second relaxation time r,v, always ends at a finite 
plateau value C,(N) which consi&rably exceeds the ‘mean-field’ limit Cm mentioned 
above, e.g. C,(N) is as large as 0.97 already for N = 16, whereas CMF = 0.88 for the q 
value considered (q = 0.6). see figure 2. Moreover, according to figure 3, C,(N) converges 
to 1 for N --f CO, which means that in this limit all samples are eventually trapped in a 2- 
cycle or fixed point. However, the characteristic times rN, where the plateau value C,(N) 
of (Cz(t)) is reached, obviously also increase drastically with N ,  e.g. from figure 3 it can 
be seen that r N  % 20000 for N = 256. This will be discussed more in detail below. 

These results, which also have been obtained for other values of q between 0.5 and 1, 
mean that for t > r N ,  if the limit N + 00 is taken under this constraint, i.e. after t + CO, 

then the systems with T = 0 and q > 0.5 get stuck either in a fixed point or in a 2-cycle 
with probability 1. (The case of q < 0.5, which has already been studied by one of us in a 
former paper [3], is mentioned further below.) 

In figure 4, again for q = 0.6 we study how thii ‘trapping’ behaviour is changed by a 
small finite temperature for three sample sizes, N = 128, N = 192 and N = 256. There, up 
to t = 2500, the probabilistic dynamics of (2) have been chosen, with a small temperature 
of T = 0.04. From figure 4 it can be seen that for N = 192 and N = 256 even this low 
temperature is high enough to prevent the above-mentioned trapping in most cases, so that 
for these values of N ,  the sample-average (Cz(t))  is essentially constant c 1 already for 
t > 100, whereas for N = 128, T is not high enough to prevent the gradual increase of the 
average (Cz(t ) ) ,  i.e. to prevent the trapping of more and more samples with increasing time. 
Thus the necessary temperature for the suppression of trapping increases with decreasing N .  

In any case, switching off the thermal noise for t > 2500, one finds in the right part 
of figure 4 that for all three values of N the function (CZ(t)) converges monotonically to 
(Cz(03)) = 1, i.e. for T = 0 and q > 0.5 we find that happing cannot be avoided, although 
the characteristic trapping time incrkases drastically with N .  However, one should note at 
this place that even such large trapping times as r N  % loo00 for N % 200 would still be 
much less than the ultimate time rmPs = 2N (% lom for N % 200), after which the state 
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Figure 3. The long-time behaviour of the averaged 
'2-cycle function' (C*(f)) is presented over ?e time 
for up to 20000 time steps. averaged for io00 samples 
for fixed size of the system, ranging from N = 16 to 
N = 256, for q = 0.6. 

Figure 4. The long-lime behaviour of (Cz(1)) is 
presented over t for ihe systems of figure 3 for N = 
128, N = 192 and N = 256. Between f = 1 and I = 
2500, the stochastic p+eJ dynamics of (2) have been 
applied with a low 'temperan" T = 0.04, whereas 
at f = 2500 the system has switched Io determiNstic 
updating, i.e. with T = 0, equation (1). For further 
explanation see the text. 

of the finite system definitely must repeat, if it has not done so before. 
To understand the N-dependence of the necessary temperature, we have studied the 

behaviour of single typical samples. Figure 5 shows the typical behaviour of {Cz(t)) for 
two system sizes, N = 256 and N = 1024. For N = 256, (Cz(t))  at first fluctuates strongly 
around the 'mean-field limit' Cm, before eventually a strongenough fluctuation leads to 
a sudden trapping (see the inset in figure 5(a), whereas for N = 1024 the fluctuations 
around the average are reduced by a factor 112, i.e. the fluctuation amplitude seems to 
decrease a N-'P as expected, so that for N = 1024 the system does not get happed on 
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Figure 5. The typical behaviour of 
(Cz(1)) is presented, where only the 

1000 2000 ~ 3000 average over aU sites i = 1, . . . , N 
of one random m o l e  has been 

A 

% 0.7 
- 

019 

n(2 

performed, with N 256 in the 
upper part (U). and N = 1024 in 
the lower p m  (b), for q = 0.6. 
In % inset, the time interval where 
the system is trapped in the '2- 
cycle-amactor' BT t -=  2% in (U)  

is presented in a magnified form. 
Note that in (b) the Bucfuations are 
reduced by a factor of 0.5, i.e. theii 

N=lOZ4 "."I , , , , , , , b) : 
1000 2000 3000. 0.7 

timet amplitude is o( N-'l2. 
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the time-scale considered. 
Thus for q 0.5 at T = OK only fixed points or cycles with period 2 appear as traps 

in the limit ‘ t  + M first and then N + m’. 
On the other hand, for q < 0.5, too, we find 2-cycle traps with relatively high probability. 

However, now we also find attractors with very long period, where even if the system is 
trapped in such an attractor, (Cz(t)) simply varies around the ‘mean field’ average CMF(~)  
presented in figure 2. The probability to find such a long-period attractor decreases with 
increasing period, but increases with decreasing q ,  as can be seen from figure 5 and figure 6 
of [3] already mentioned. These ‘long-period attractors’ are, however, very sensitive to small 
changes of the coupling constants: e.g., for systems with N Y 150 and q = 0.4, changes 
as small as A p  = (see equation (3)) already lead to the decay of a long amactor into 
shorterattractors in the vicinity of the orbit of the original long cycle. 

At this point the following remark is in order. From our limited number of simulations 
we can of course fix the apparent ‘critical value’ of q only approximately, namely to 
qc = 0.5 f 0.025, since in figure 2 of 131. where the range of q has been covered rather 
completely, we have already found the exponential increase of the cycle time with N clearly 
for q = 0.45 and below, but clearly not for q = 0.55 and above. 

An interesting question is the dependence of the trapping time rN on N for our 
Shemngton-Kirkpaptrick spin glass with non-symmetric couplings and parallel dynamics. 
In their study for a similar model with random-sequential dynumics, Crisanti and 
Sompolinsky 141 have found ‘log-normal behaviour’, i.e. a normal distribution for InrN, 
with average and mean-square deviation increasing linearly with N for q = 0.72 and 
q = 0.47. Such a behaviour is in agreement with our results for parallel dynamics, as can 
be seen fiom figure 6, where we also find a ‘log-normal distribution’ for the different ZN 
obtained from the different samples used for N = 256 in figure 4. 

From this ‘log-normal’ distribution, the results for N = 256 in figure 4 can simply be 
obtained by successively ‘filling the distribution’, i.e. with 

one has 
,.I 

Here the time ro(N) appearing in the distribution is roughly the ‘halfway time’ between 
rm = 100, where in figure 2 the ‘mean-field‘ saturation value Cm of (Cz(t)) is reached, 
and the final trapping at (C,(t)) = 1, i.e. from figure 2 for q = 0.6 one has CW = 0.885, 

Figure 6. The log-normal distribution for the 
Wapping times found tiom our simulations at 9 = 
0.6 for N = 256 is presented. The circles with ermr 
bars represent the numerical results obtained frcm 

‘0 2 4 6 8 10 12 14 a histogram. The solid line is the fit with (4), for 
70(N) = 1275 and A,, = 1.25. 

Q 

lnqN 
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and the time r o ( N )  % 1275~obtained from OUT results for N = 256, if they are fitted with 
(4) and (5), is roughly obtained if in figure 3 one looks for the time at which the function 
(Cz(t)) assumes the value = 0.9425, which is intermediate between 0.885 and 1. 

For the simpler case of random sequential dynamics, [4], similar subtleties cohceming 
the interchange of the limits N + M and r + 00 have been found. However, in that 
case, if the limit t -+ 03 is taken before N + 00, the system always ends in a metastable 
state., i.e. a fixed point attractor, for all values of q.  Since for &dom sequential updating 
cyclic attractors cannot appear, this is what one would ‘extrapolate’ from our study for that 
simpler case. However, our systems are more complicated. In particular, due to the lack of 
cyclic attractors in the case of 141, the different dynamic behaviour seen by us with parallel 
dynamics for q < 0.5 and > 0.5, respectively, with the possibility of extreme long cycles 
in the first-mentioned case [3], but only fixed-point and 2-cycles in the second case, has no 
correspondence at all in [4]. 

In conclusion, we ‘have shown that the dynamic behaviour of Shemngton-Kirkpatrick 
spin glasses with non-symmetric coupling under parallel updating is subtle, such that for 
symmetry parameters q > 0.5 and T = 0 there are at least three characteristic times, 
namely (i) the short mean-jeld time rMF (% 100 steps), which determines the approach to 
the plateau values (CZ(t = 100)) = Cm plotted in figure 2 and does not~depend,on N, 
(ii) the truppinl: time rM. which is much larger and increases exponentially with N ,  e.g. to 
values as large as 20000 for N = 256 obtained with q = 0.6 and T = 0 (see figure 3), 
and (iii) the ‘transient time’ ro(!V) appearing in the ‘log-normal dismbution’ of (5) and (6). 
This time, too, seems to increase exponentially with N and C&I be roughly characterized as 
that time where for given N the correlation function (Cz(t ) )  assumes the intermediate value 
between CMF and 1. For times larger than rN, the system is trapped in a 2-cycle or a fixed 
point for IJ 0.5, whereas for II < 0.5 also extremely long cycles form, as already found 
in [3]. However, the trapping phenomenon is suppressed already by small thermal noise. 

At the end, the question remains as to what physical mechanisms lead to the above 
mentioned trapping and the related times ro(N) and rN. There Seems to be some kind of 
noise related to the non-symmetry, i.e. this noise would increase with decreasing symmetry 
q .  Partly this noise seems to act like thermal noise, i.e. it tends to suppress (Cz(t)) .  
However, for q > 0.5 with deterministic dynamics, i.e. for T = 0, the tendency of the 
system to get trapped in a fixed point or 2-cycle seems to win, although only at times, 
which increase exponentially with the system size. Finally, in the same case, but for 
q e 0.5, also cycles with exponentially long periods appear, see [3]. 
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